Evolution of xylem lignification and hydrogel transport regulation.
نویسندگان
چکیده
In vascular plants, the polysaccharide-based walls of water-conducting cells are strengthened by impregnation with the polyphenolic polymer lignin. The fine-scale patterning of lignin deposition in water-conducting cells is shown here to vary phylogenetically across vascular plants. The extent to which water transport in xylem cells can be modified in response to changes in the ionic content of xylem sap also is shown to vary in correlation with variation in lignification patterns, consistent with the proposed mechanism for hydraulic response through size change of middle-lamella pectins. This covariation suggests that the fine-scale distribution of hydrophilic polysaccharides and hydrophobic lignin can affect hydraulic as well as mechanical properties, and that the evolutionary diversification of vascular cells thus reflects biochemical as well as morphological innovations evolved to fulfill opposing cell functions of transport and structural support.
منابع مشابه
Bundle sheath lignification mediates the linkage of leaf hydraulics and venation.
The lignification of the leaf vein bundle sheath (BS) has been observed in many species and would reduce conductance from xylem to mesophyll. We hypothesized that lignification of the BS in lower-order veins would provide benefits for water delivery through the vein hierarchy but that the lignification of higher-order veins would limit transport capacity from xylem to mesophyll and leaf hydraul...
متن کاملMolecular basis for the evolution of xylem lignification.
The lignification of xylem is an adaptive trait of great significance. Gymnosperms and angiosperms share an ancient, conserved set of enzymes that are regulated by a conserved transcription factor and that are responsible for the formation of guaiacyl lignin. Angiosperms have evolved at least two enzymes that catalyze the production of syringyl lignin. Association genetics is now being used to ...
متن کاملDefining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems.
Many land plants evolved tall and sturdy growth habits due to specialized cells with thick lignified cell walls: tracheary elements that function in water transport and fibers that function in structural support. The objective of this study was to define how and when diverse cell populations contribute lignin precursors, monolignols, to secondary cell walls during lignification of the Arabidops...
متن کاملNon-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans.
Postmortem lignification of xylem tracheary elements (TEs) has been debated for decades. Here, we provide evidence in Zinnia elegans TE cell cultures, using pharmacological inhibitors and in intact Z. elegans plants using Fourier transform infrared microspectroscopy, that TE lignification occurs postmortem (i.e., after TE programmed cell death). In situ RT-PCR verified expression of the lignin ...
متن کاملDifferential expression of two O-methyltransferases in lignin biosynthesis in Zinnia elegans.
Caffeic acid 3-O-methyltransferase (CAOMT) and caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT) are involved in different methylation pathways in lignin biosynthesis. We previously showed that only the CCoAOMT was markedly induced during lignification in in vitro differentiating tracheary elements (TEs) of Zinnia elegans. To further examine the expression patterns of CAOMT in lignification, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 50 شماره
صفحات -
تاریخ انتشار 2004